SpinWarrior Dynamic Library
V1.5 for Windows and Linux

Applicable for all SpinWarriors <

Code Mercenaries

Overview

The SpinWarrior Kit Dynamic Library provides a simple API to access all SpinWarrior products from Code
Mercenaries. It is intended to be used with any programming language available on Windows or Linux.
Sample programs are included for Microsoft VC++ 6 and Borland Delphi 6 for Windows and C for Linux. The
name of the library is spinkit.dll for Windows and libspinkit.so for Linux.

The API is deliberately simple. It does not address plug and unplug of SpinWarriors for example.

It allows access to several SpinWarriors in parallel though. The limit is 16 SpinWarriors. If this limit is too
low then it is possible to recompile the sources with a higher limit. The source code is included in

the SDK.

The starting point of all activity is the function spinkitoOpenDevice (). It opens all SpinWarriors

connected to the computer. Likewise spinkitCloseDevice () closes all open devices.

SpinKitGetNumbDevs () tells you how many devices have been found and spinkitGetDeviceHandle () gives
access to the individual devices of the list. From there on it is mainly SpinkitRead () or
SpinKitReadNonBlocking () to read from the device.

For Linux libspinkit.so has been implemented which exposes the same API as spinkit.dll.

spinkit.dll and libspinkit.so do not expose a direct Java interface yet.

The 1.5 API supports the SpinWarriors 24A3, 24R4 and 24R6.
- 24A3 supports 3 encoders using 16 bit absolute position tracking and 6 digital inputs
- 24R4 supports 4 encoders using 8 bit relative position tracking and 7 switches

- 24R6 supports 6 encoders using 8§ bit relative position tracking and 3 switches

SpinWarrior Dynamic Library V1.5 31. Aug 2016 1

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

Data structures

The data from the SpinWarriors is returned in a maximum structure which can carry all data. The unused
elements simply do not change. The originating SpinWarrior is included in the structure. This is for
compatibility for a future 2.0 API which will use callbacks.

For a SpinWarrior 24R6 or 24R4 spins elements provide a one-byte sign-extended relative value as int. The
SpinWarrior 24A3 returns a two-byte sign-extended absolute value as int. Buttons elements provide 1 for the
switch closed and 0 for the switch open.

C:

typedef struct SPINKIT DATA
{
SPINKIT_HANDLE Device;
int Spins([6];
BOOL Buttons|[7];
}
SPINKIT DATA, *PSPINKIT DATA;

Delphi:

type
PSPINKIT DATA = "~SPINKIT DATA;
SPINKIT DATA = packed record
Device: SPINKIT HANDLE;
Spins: array [0..5] of Integer;
Buttons: array [0..6] of BOOL;
end;

SpinWarrior Dynamic Library V1.5 31.08.2016 2

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitOpenDevice

Declaration:

SPINKIT HANDLE SPINKIT API SpinKitOpenDevice (void) ;
function SpinKitOpenDevice: SPINKIT HANDLE; stdcall;

Opens all available SpinWarrior devices and returns the handle to the first device found.

The value returned is an opaque handle to the specific device to be used in most of the other functions of

the API.

The return value for failure is NULL (which is ni1 for Delphi). Use GetLastError ()

to learn more about the reason for failure. The most common reason for failure is of course that no SpinWarrior
is connected. GetLastError () returns ERROR DEV_NOT EXIST for that.

Calling this function several times is possible, but not advisable.

Returning the first SpinWarrior makes it simpler for programmers to handle the use of a single SpinWarrior.
The maximum number of devices handled is 16 for both Windows and Linux.

Sample usage C:

SPINKIT HANDLE spinHandle;
spinHandle = SpinKitOpenDevice();

if (spinHandle != NULL)
{
// ... success, access devices
}
else
{
// ... didn't open SpinWarrior, handle error
}
Sample usage Delphi:
var
spinHandle: SPINKIT HANDLE;
begin
spinHandle := SpinKitOpenDevice;
if Assigned(spinHandle) then
begin
// ... success, access devices
end
else
begin
// ... didn't open SpinWarrior, handle error
end;
end;

SpinWarrior Dynamic Library V1.5 31.08.2016 3

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitGetProductid

Declaration:

ULONG SPINKIT API SpinKitProductId(SPINKIT HANDLE spinHandle);
function SpinKitGetProductId(spinHandle: SPINKIT HANDLE) : ULONG; stdcall;

Return the Product ID of the SpinWarrior device identified by spinHandle.

The Product ID is a 16-bit Word identifying the specific kind of SpinWarrior. For easier compatibility with
VB6 the function returns a 32-bit DWORD with the upper word set to 0.

The values SPINKIT PRODUCT ID24R4, SPINKIT PRODUCT ID24R6 and SPINKIT PRODUCT ID24A3 can be
returned. 0 is returned for an invalid spinHandle.

The value is cached in the dynamic library because access to the device needs some msecs.

Sample usage C:

BOOLEAN IsSpinWarrior24R4 (SPINKIT HANDLE spinHandle)

{
return SpinKitGetProductlId(spinHandle) == SPINKIT PRODUCT ID24R4;

}

BOOLEAN IsSpinWarrior24A3 (SPINKIT HANDLE spinHandle)
{

return SpinKitGetProductId(spinHandle) == SPINKIT PRODUCT ID24A3;
}
Sample usage Delphi:
function IsSpinWarrior24R4 (spinHandle: SPINKIT HANDLE) : Boolean;
begin
Result := SpinKitGetProductld(spinHandle) = SPINKIT PRODUCT IDZ24R4;
end;

function IsSpinWarrior24A3 (spinHandle: SPINKIT HANDLE) : Boolean;
begin

Result := SpinKitGetProductId(spinHandle) = SPINKIT PRODUCT ID24A3;
end;

1
SpinWarrior Dynamic Library V1.5 31.08.2016 4

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitGetNumDevs

Declaration:

ULONG SPINKIT API SpinKitGetNumDevs (void) ;
function SpinKitGetNumDevs: ULONG; stdcall;

Returns the number of SpinWarrior devices present.

The function has to be called after spinkitOpenDevice () to return meaningful results.

Plugging or unplugging SpinWarriors after calling spinkitOpenDevice () is not handled. The number
SpinKitGetNumDevs () returns stays the same.

Sample usage C:

SPINKIT HANDLE spinHandle;
ULONG numDevs;

spinHandle = SpinKitOpenDevice();
if (spinHandle != NULL)
{
// ... success, count devices
numDevs = SpinKitGetNumDevs () ;
}

Sample usage Delphi:

var
spinHandle: SPINKIT HANDLE;
numDevs: ULONG;

begin
spinHandle := SpinKitOpenDevice;
if Assigned(spinHandle) then
begin
// ... success, count devices
numDevs := SpinKitGetNumDevs;
end;
end;

SpinWarrior Dynamic Library V1.5 31.08.2016 5

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitGetDeviceHandle

Declaration:

SPINKIT HANDLE SPINKIT API SpinKitGetDeviceHandle (ULONG numDevice) ;
function SpinKitGetDeviceHandle (numDevice: ULONG) : SPINKIT HANDLE; stdcall;

Access a specific SpinWarrior. numbevice is an index into the available SpinWarrior devices.

The number range is 1 to SpinKitGetNumbDevs (). Any value outside that range returns NULL/nil.
SpinKitGetDeviceHandle (1) returns the same handle as SpinKitOpenDevice ().

This function is an extension to SpinKitOpenDevice (). SpinKitOpenDevice () has

opened all SpinWarriors but has only returned the first one found. spinkitGetDeviceHandle () allows
to access the remaining devices.

Sample usage C:

SPINKIT HANDLE spinHandles[SPINKIT_MAX_DEVICES];
ULONG numDevs, 1i;

spinHandles[0] = SpinKitOpenDevice();
if (spinHandles[0] != NULL)
{
// ... success, count devices
numDevs = SpinKitGetNumDevs () ;
// get all SpinWarriors
for(i = 2; i1 <= numDevs; i++)
spinHandles[i-1] = SpinKitGetDeviceHandle (i) ;
}

Sample usage Delphi:

var
spinHandles: array [1..SPINKIT MAX DEVICES] of SPINKIT HANDLE;
I: ULONG;
begin
spinHandles[1] := SpinKitOpenDevice;
if Assigned(spinHandles[1]) then
// get all SpinWarriors
for I := 2 to SpinKitGetNumDevs do
spinHandles[I] := SpinKitGetDeviceHandle(I);

end;

1
SpinWarrior Dynamic Library V1.5 31.08.2016 6

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitGetRevision

Declaration:

ULONG SPINKIT API SpinKitGetRevision (SPINKIT HANDLE spinHandle);
function SpinKitGetRevision (spinHandle: SPINKIT HANDLE) : ULONG; stdcall;

Return the revision of the firmware of the SpinWarrior device identified by spinHandle.

The revision is a 16-bit Word telling the revision of the firmware. For easier compatibility with VB6 the
function returns a 32-bit DWORD with the upper word set to 0.

The revision consists of 4 hex digits. $1100 designates the current revision 1.1.0.0. 0 is returned for an
invalid spinHandle. The value is cached in the dynamic library because access to the device needs some
msecs.

Sample usage C:

BOOLEAN IsOldSpinWarrior (SPINKIT HANDLE spinHandle)
{

return SpinKitGetRevision (spinHandle) < 0x1100;
}

Sample usage Delphi:
function IsOldSpinWarrior (spinHandle: SPINKIT HANDLE) : Boolean;
begin
Result := SpinKitGetRevision (spinHandle) < $1100;
end;

SpinWarrior Dynamic Library V1.5 31.08.2016 7

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitGetSerialNumber

Declaration:

BOOL SPINKIT API SpinKitGetSerialNumber (SPINKIT HANDLE spinHandle, PWCHAR serialNumber) ;
function SpinKitGetSerialNumber (spinHandle: SPINKIT HANDLE;
serialNumber: PWideChar): BOOL; stdcall;

Fills a buffer with the serial number string of the specific SpinWarrior identified by spinHandle.

All SpinWarriors contain an 8 digit serial number. The serial number is represented as an Unicode string. The
buffer pointed to by serialNumber must be big enough to hold 9 Unicode characters (18 bytes), because the
string is terminated in the usual C way with a 0 character.

On success, this function copies the SpinWarrior serial number string to the buffer and returns TrUE. It
fails and returns FALSE if either spinHandle or serialNumber buffer are invalid.

Sample usage C:

void ShowSerialNumber (SPINKIT HANDLE spinHandle)

{
WCHAR buffer[9];

SpinKitGetSerialNumber (spinHandle, buffer);
printf ("$Sws\n", buffer);

}

Sample usage Delphi:
procedure ShowSerialNumber (spinHandle: SPINKIT HANDLE) ;
var
Buffer: array [0..8] of WideChar;
begin

SpinKitGetSerialNumber (spinHandle, @Buffer[O]);
ShowMessage (Buffer) ;
end;

1
SpinWarrior Dynamic Library V1.5 31.08.2016 8

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitCloseDevice

Declaration:

void SPINKIT API SpinKitCloseDevice (SPINKIT HANDLE spinHandle);
procedure SpinKitCloseDevice (spinHandle: SPINKIT HANDLE); stdcall;

Close all SpinWarrior devices.
You must call this function when you are done using SpinWarriors in your program.
If multiple SpinWarriors are present all will be closed by this function.

SpinKitOpenDevice () and SpinKitCloseDevice () use a SPINKIT HANDLE for the case of only one
SpinWarrior connected to the computer. This way you do not have to use SpinKitGetNumDevs () Or
SpinKitGetDeviceHandle () at all.

The function ignores the parameter completely. Since it closes all opened SpinWarriors anyway, there is no real
need to check if the parameter is the SPINKIT HANDLE returned by spinkitOpenDevice (). The parameter is
only retained for cleaner looking sources. If you handle only a single SpinWarrior in your program then
SpinKitOpenDevice () and SpinKitCloseDevice () look and work as intuition suggests.

Sample usage C and Delphi:

// OK, we're done, close Spinarrior
SpinKitCloseDevice (spinHandle) ;

SpinWarrior Dynamic Library V1.5 31.08.2016 9

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitRead

Declaration:

BOOL SPINKIT API SpinKitRead (SPINKIT HANDLE spinHandle, PSPINKIT DATA SpinData);
function SpinKitRead (spinHandle: SPINKIT HANDLE;
var SpinData: SPINKIT DATA): BOOL; stdcall;

Read data from SpinWarrior.
TRUE 1s returned for data successfully read. FALSE means an invalid spinHandle or SpinData buffer.

ATTENTION!

This function blocks the current thread until something changes on the SpinWarrior, so if you do not want your
program to be blocked you should use a separate thread for reading from SpinWarrior. If you do not want a
blocking read use spinkKitReadNonBlocking ().

Alternatively you can set the read timeout with spinKitSetTimeout () to force SpinKitRead () to

fail when the timeout elapsed.

The SpinWarrior 24A3 always delivers data when read so there is no blocking. In fact this device returns data
each 8 msec whether it changed or not. 8 msec is the minimum time interval a low-speed HID device can be
polled with.

Sample usage C:

SPINKIT_DATA data;
if (SpinKitRead (spinHandle, &data))
{

// data read, interpret it

}

Sample usage Delphi:

var
Data: SPINKIT DATA;

if SpinKitRead (spinHandle, Data) then
begin
// data read, interpret it

end;

SpinWarrior Dynamic Library V1.5 31.08.2016 10

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitReadNonBlocking

Declaration:

BOOL SPINKIT API SpinKitReadNonBlocking (SPINKIT HANDLE spinHandle,
PSPINKIT DATA SpinData);

function SpinKitReadNonBlocking (spinHandle: SPINKIT HANDLE;
var SpinData: SPINKIT DATA): BOOL; stdcall;

Read data from SpinWarrior, but do not block if no data is available.

The only difference to spinkitRread is that the function does not block if no data is available from the device.
The return value is FALSE for an invalid spinHandle or spinData parameter or more commonly that no data
was read. TRUE signals that new data was read. For a SpinWarrior 24A3 this is always the case.

Be sure to read all pending data. The SpinWarrior 24A3 is throwing data at you with the maximum data rate
possible. That means new but possibly unchanged data every 8 msecs.

Sample usage C:

SPINKIT DATA data;

// read until no more data available
while (SpinKitReadNonBlocking (spinHandle, &data))
{
// interpret data
}

Sample usage Delphi:

var
Data: SPINKIT DATA;
Ret: ULONG;
begin
// read until no more data available
while SpinKitReadNonBlocking (spinHandle, Data) do
begin
// interpret data
end;

1
SpinWarrior Dynamic Library V1.5 31.08.2016 11

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitSetTimeout

Declaration:

BOOL SPINKIT API SpinKitSetTimeout (SPINKIT HANDLE spinHandle, ULONG timeout) ;
function SpinKitSetTimeout (spinHandle: SPINKIT HANDLE; timeout: ULONG): BOOL; stdcall;

Set read I/O timeout in milliseconds.
SpinKitSetTimeout () makes spinkitRead () fail if it does not read a report in the allotted time.
It is recommended to use 1 second (1000) or bigger timeout values.

Sample usage C and Delphi:

// set read timeout to 1000 msecs
SpinKitSetTimeout (spinHandle, 1000);

SpinWarrior Dynamic Library V1.5 31.08.2016 12

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

SpinKitVersion

Description:

PCHAR SPINKIT API SpinKitVersion(void);
function SpinKitVersion: PChar; stdcall;

Return a static C string identifying the dynamic library version. Currently it returns "SpinWarrior Kit vV1.5".
Sample usage C:

printf ("$s\n", SpinKitVersion());

Sample usage Delphi:

ShowMessage (SpinKitVersion) ;

SpinWarrior Dynamic Library V1.5 31.08.2016 13

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

Extras

The Windows dynamic library spinkit.dll exports some additional functions which are not part of the SpinKit
core API. These functions are helper functions to generate keyboard events. Each functions generates one or
more keyboard events (through keybd event). This means that the keys are generated as if coming from real
keyboard entry.

void CMSendVirtualKeyEx (WORD Vk, BOOL KeyUp) ;

void CMSendScanCodeEx (WORD Scan, BOOL KeyUp) ;

void CMSendVirtualKey (WORD Vk) ;

void CMSendScanCode (WORD Scan) ;

void CMSendVirtualKeySequence (WORD *VkSeq, int Count);

void CMSendScanCodeSequence (WORD *ScanSeq, int Count);

void CMSendVirtualKeySequenceEx (WORD *VkSeq, BOOL *KeyUp, int Count);
void CMSendScanCodeSequenceEx (WORD *ScanSeq, BOOL *KeyUp, int Count);
void CMSendString (PCHAR Str);

char CMSendSpinChar (int Steps);

CMSendVirtualKey sends out a key press (key down and key up in succession). The parameter is a virtual key
code.

cMSendScanCode sends out a key press (key down and key up in succession). The parameter is a scan code.

CMSendVirtualKeyEx sends out a key down (KeyUp = False) or a key up (KeyUp = True) event. The
parameter is a virtual key code.

CMSendScanCodeEx sends out a key down (KeyUp = False) or a key up (KeyUp = True) event. The parameter
is a scan code.

CMSendVirtualKeySequence sends out a sequence of key presses (key down and key up in succession). vkseq
points to an array of count virtual key codes to send.

CMSendScanCodeSequence sends out a sequence of key presses (key down and key up in succession). ScanSeq
points to an array of Count scan codes to send.

CMSendVirtualKeySequenceEx sends out a sequence of key down (KeyUp = False)or a key up (KeyUp =
True) events. VkSeq points to an array of count virtual key codes to send. keyUp points to the accompanying
array of Boolean values. If keyUp is NULL then all events are handled as key down events.

CMSendScanCodeSequenceEx sends out a sequence of key down (kKeyup = False) or a key up (KeyUp =
True) events. ScanSeq points to an array of Count scan codes to send. KeyUp points to the accompanying array
of Boolean values. If keyUp is NULL then all events are handled as key down events.

CMSendString sends out a sequence of key presses resulting in the string of ASCII chars to appear.
Shift/Ctrl/Alt downs and ups are interspersed to achieve the result. cMSendstring ("ABC") results in each letter
key press enclosed in Shift down and Shift up whereas cMSendstring ("abc") does not need this.

CMSendspinChar implements a spin control effect with letters. The function keeps a position in a set of chars
going from ' ' (space, 0x20) to '~"'(tilde, 0x7E). cMSendSpinChar (0) initializes to ' ' (space, 0x20). The
function sends out a single space key press. Any other value for Steps (positive or negative) advances the
position in the char set with a rollover at either end. The function sends out two key presses. The first one is
always “\b’ (backspace) followed by the current char in the set. The return value is the current char in the set.
The Delphi sample SpinWarrior shows the intended use of cMsendspinChar.

SpinWarrior Dynamic Library V1.5 31.08.2016 14

SpinWarrior Dynamic Library V1.5 Code Mercenaries
for Windows and Linux

Programming by Robert Marquardt.

Legal Stuff

This document is © 2016 by Code Mercenaries.

The information contained herein is subject to change
without notice. Code Mercenaries makes no claims as
to the completeness or correctness of the information
contained in this document.

Code Mercenaries assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Code
Mercenaries product. Nor does it convey or imply any
license under patent or other rights.

Code Mercenaries products may not be used in any
medical apparatus or other technical products that are
critical for the functioning of lifesaving or supporting
systems. We define these systems as such that in the
case of failure may lead to the death or injury of a
person. Incorporation in such a system requires the
explicit written permission of the president of Code
Mercenaries.

Trademarks used in this document are properties of

their respective owners.

Code Mercenaries

Hard- und Software GmbH
Karl-Marx-Str. 147a

12529 Schonefeld / Grossziethen
Germany

Tel: x49-3379-20509-20

Fax: x49-3379-20509-30

Mail: support@codemercs.com
Web: www.codemercs.com
HRB 9868 CB

Geschiftsfiihrer: Guido Korber, Christian Lucht

SpinWarrior Dynamic Library V1.5 31.08.2016 15

	Overview
	Data structures
	SpinKitOpenDevice
	SpinKitGetProductId
	SpinKitGetNumDevs
	SpinKitGetDeviceHandle
	SpinKitGetRevision
	SpinKitGetSerialNumber
	SpinKitCloseDevice
	SpinKitRead
	SpinKitReadNonBlocking
	SpinKitSetTimeout
	SpinKitVersion
	Extras

